Robust Optimizer for Intensity Modulated Proton Therapy based on GPU
-
Graphical Abstract
-
Abstract
This paper describes the development of a fast robust optimization tool that takes advantage of the GPU technologies. The objective function of the robust optimization model considered nine boundary dose distributions——two for ±range uncertainties, six for ±set-up uncertainties along anteroposterior (A-P), lateral (R-L) and superiorinferior (S-I) directions, and one for nominal situation. The nine boundary influence matrices were calculated using an in-house dose engine for proton pencil beams of a finite size, while the conjugate gradient method was applied to minimize the objective function. The GPU platform was adopted to accelerate both the proton dose calculation algorithm and the conjugate gradient method. Three clinical cases-one head and neck cancer case, one lung cancer case and one prostate cancer case-were investigated to demonstrate the clinical significance of the proposed robust optimizer. Compared with conventional planning target volume (PTV) based IMPT plans, the proposed method was found to be conducive in designing robust treatment plans that were less sensitive to range and setup uncertainties. The three cases showed that targets could achieve high dose uniformity while organs at risks (OARs) were under better protection against setup and range errors. The run times for the three cases were around 10 s for 100 iterations. The GPU-based fast robust optimizer developed in this study can serve to improve the reliability of traditional proton treatment planning by achieving a high level of robustness in a much shorter time.
-
-