Piecewise Compensation and Redundancy Design for Superconducting Cavity Failure of CiADS Linac
-
Graphical Abstract
-
Abstract
The accelerator driven subcritical system (ADS) has put forward unprecedented demands on the stability and beam trip of the accelerator operation. Depending on analysis, failure of the superconducting cavities is a major cause for beam trip of the superconducting cavity. Therefore, a new method of piecewise compensation is proposed to improve the stability of high power superconductivity linac. The piecewise compensation scheme proposed in this paper is compared with the existing global compensation and local compensation technology. While guaranteeing the beam quality of the accelerator and without beam loss transmission, the piecewise compensation method can optimize the number of superconducting cavities involved in energy compensation and reduce the demand for the backup redundancy of power sources of the superconducting cavities. At the end of the paper, the multi-particle simulation of piecewise compensation aims at the physical design of CiADS superconducting linac. The result shows that 48% of superconducting cavities modify the cavity's Epeak during the compensation process and the demanded redundancy of total power sources is less than 20% under the premise of successful compensation for the failure of superconducting cavities through the piecewise compensation method.
-
-