Influence of Curvature Energy on Thermodynamic Driving Force
-
Graphical Abstract
-
Abstract
In order to study the effect of curvature energy on the thermodynamic driving force (TDF) of nuclear fission, the potential and entropy barrier of 200Pb and 224Th systems are calculated by using the truncated droplet model including curvature energy, respectively. Compared with the liquid drop model, the results show that curvature energy does not affect the saddle point of 224Th, but pushes the saddle point of 200Pb backwards the ground state. The stronger the deformation dependence of the level density parameter is, the closer the saddle point of entropy barrier for these systems is to the ground state. In order to further investigate how curvature energy affects TDF through nuclear potential and entropy, respectively, the prescission neutron multiplicity (PNM) is selected as the probe, some simulations based on two schemes are carried out. The results show that curvature energy reduces the potential driving force of 200Pb and 224Th, and enhances the entropy potential driving force. Combined with the calculations and analyses of PNM, the former effect is more obvious than the latter, so curvature energy weakens TDF of two systems on whole, thus delaying the nuclear fission process of two systems.
-
-