Nuclear Shapes Made Up by Nucleons and Nuclear Forces
-
Graphical Abstract
-
Abstract
We discuss the quantum self-organization introduced recently as one of the major underlying mechanisms of the quantum many-body systems. Atomic nuclei are actually a good example, because two types of the motion of nucleons, single-particle states and collective modes, interplay in determining their structure. The collective mode appears as a consequence of the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to bring about such resistance power:a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other in the usual understanding. However, the nuclear forces are rich and complicated enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be demonstrated with the concrete example taken from Zr isotopes. In this way, the quantum self-organization occurs:single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). Thus, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture a la Landau. Type Ⅱ shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
-
-