Advanced Search
CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. DOI: 10.11804/NuclPhysRev.35.02.196
Citation: CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. DOI: 10.11804/NuclPhysRev.35.02.196

Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm

  • The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility——HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return