Studies of in-beam Gamma Spectroscopy and Next-generation Gamma Detector Array at HKU
-
Graphical Abstract
-
Abstract
Exploring the evolution of shell closures and examining the magicity of extremely exotic nuclei are the main research interests of HKU (University of Hong Kong) experimental nuclear physics group. The group has employed in-beam gamma-ray spectroscopy technique to investigate the vanishing of N=20 magicity in 30Ne (N=20) and the strong magicity in nuclei around 78Ni (Z=28, N=50). The approved future's experiment on spectroscopy of 53,56Ca, proposed by HKU, will give quantitative information for the "magic index" of N=34 and shell evolution toward N=40. The next goal is to investigate the structure of 100Sn (N=Z=50), particularly the energy of the first 2+ state, and the low-lying states in the neighboring nuclei. 100Sn lies on the proton drip-line and on the astrophysical rp-process path. Characterizing the magicity of 100Sn and the nature of single-particle states in its neighboring nuclei is therefore essential to the fundamental understanding of nuclear forces and nucleo-synthesis. To significantly increase the data statistics for our physics goals, HKU group has prepared the upgrade of gamma-ray spectrometer DALI2 with 30% more NaI(Tl) detectors integrated into a new array configuration. On the other hand, next significant insights into the structure of nuclei would require new gamma-ray detection array capable for higher precision gamma-ray spectroscopy. HKU group in collaboration with IMP and CIAE therefore proposes to construct a new-generation gamma-ray detection array based on the novel scintillator LaBr3(Ce) to explore the new physics in nuclei far from the valley of stability. Utilizing the radioactive beams at the Chinese large-scale facilities such as the Heavy Ion Research Facility in Lanzhou (HIRFL) in IMP and the future's High Intensity heavy-ion Accelerator Facility (HIAF), this novel LaBr3(Ce) array would lead to a significant boost to the frontiers of exotic-nuclei research, which will guide scientists towards the comprehensive and even beyond-traditional understanding of nuclear forces and nucleosynthesis.
-
-